Inflation

Lecture 7

Robb T. Koether

Hampden-Sydney College

Mon, Sep 10, 2018

- Inflation
- Increase in Prices
- Decrease in Purchasing Power
- 4 An Example
- Assignment

Outline

- Inflation
- Increase in Prices
- 3 Decrease in Purchasing Power
- 4 An Example
- 6 Assignment

Definitions

Definition (Inflation Rate)

The inflation rate is the annual rate at which prices increase. Equivalently, it is the rate at which money loses its purchasing power.

- DJIA history: Click here.
- Inflation history: Click here.

Definitions

Definition (Inflation Rate)

The inflation rate is the annual rate at which prices increase. Equivalently, it is the rate at which money loses its purchasing power.

- DJIA history: Click here.
- Inflation history: Click here.
- The inflation rate in Venezuela last year was 2600%.

Prices and Purchasing Power

 If a loaf of bread costs \$2.00 today and it costs \$2.10 next year, then the inflation rate is 5% because

$$\frac{2.10}{2.00} = 1.05.$$

 If \$3.00 buys 10 oz. of ground beef today, but it buys only 8 oz. next year, then the purchasing power of a dollar has fallen 20% because

$$\frac{8}{10} = 0.80 = 1 - 0.20.$$

- Suppose the rate of inflation is 3%.
- If an item costs \$10.00 today, what will it cost 3 years from now?

Year	Beginning cost	Price Increase	Ending Cost
1	\$10.00	3% of \$10.00 = 0.30	\$10.30

- Suppose the rate of inflation is 3%.
- If an item costs \$10.00 today, what will it cost 3 years from now?

Year	Beginning cost	Price Increase	Ending Cost
1	\$10.00	3% of \$10.00 = 0.30	\$10.30
2	\$10.30	3% of \$10.30 = 0.31	\$10.61

- Suppose the rate of inflation is 3%.
- If an item costs \$10.00 today, what will it cost 3 years from now?

Year	Beginning cost	Price Increase	Ending Cost
1	\$10.00	3% of \$10.00 = 0.30	\$10.30
2	\$10.30	3% of \$10.30 = 0.31	\$10.61
3	\$10.61	3% of \$10.61 = 0.32	\$10.93

Example (Inflation Example)

- Suppose the rate of inflation is 3%.
- If an item costs \$10.00 today, what will it cost 3 years from now?

Year	Beginning cost	Price Increase	Ending Cost
1	\$10.00	3% of \$10.00 = 0.30	\$10.30
2	\$10.30	3% of \$10.30 = 0.31	\$10.61
3	\$10.61	3% of \$10.61 = 0.32	\$10.93

 This calculation is exactly the same as the calculation for compound interest!

The Inflation Formula

 The formula for price increases is the same as the formula for compound interest.

future price = past price
$$\times (1 + i)^t$$
,

where *i* is the inflation rate and *t* is the number of years.

That is,

$$F = P(1+i)^t$$

where F is the future price and P is the past (or present) price.

Outline

- Inflation
- Increase in Prices
- 3 Decrease in Purchasing Power
- 4 An Example
- 5 Assignment

Example (Inflation)

• The price of a gallon of milk is \$4.00. If the inflation rate is 2%, then what is the (future) price of a gallon of milk one year later?

- The price of a gallon of milk is \$4.00. If the inflation rate is 2%, then what is the (future) price of a gallon of milk one year later?
- Five years later?

- The price of a gallon of milk is \$4.00. If the inflation rate is 2%, then what is the (future) price of a gallon of milk one year later?
- Five years later?
- The inflation rate in 1980 was 11.83%. If that rate had persisted, what would be the cost of a gallon of milk 10 years later?

- The price of a gallon of milk is \$4.00. If the inflation rate is 2%, then what is the (future) price of a gallon of milk one year later?
- Five years later?
- The inflation rate in 1980 was 11.83%. If that rate had persisted, what would be the cost of a gallon of milk 10 years later?
- Today?

- The price of a gallon of milk is \$4.00. If the inflation rate is 2%, then what is the (future) price of a gallon of milk one year later?
- Five years later?
- The inflation rate in 1980 was 11.83%. If that rate had persisted, what would be the cost of a gallon of milk 10 years later?
- Today?
- The inflation rate in 1917 was 19.66%. If that rate had persisted until now, what would be the cost of a gallon of milk?

Outline

- Inflation
- 2 Increase in Prices
- Decrease in Purchasing Power
- 4 An Example
- 5 Assignment

Purchasing Power

- Suppose that 25 years ago a standard bag of groceries cost \$20 and that today the same bag of groceries costs \$50.
- Then the purchasing power of \$1.00 today (relative to a bag of groceries) compared to 25 years ago is

$$\frac{20}{50} = 0.40$$
= 40¢.

Purchasing Power

Definition (Purchasing Power of \$1.00)

The purchasing power of \$1.00 today vs. a time in the past is the past price of that item divided the current price of that same item.

Purchasing power of \$1.00 =
$$\frac{\text{past price}}{\text{current price}}$$
.

That is,

Purchasing power of \$1.00 =
$$\frac{P}{P(1+i)^t}$$

= $\frac{1}{(1+i)^t}$
= $(1+i)^{-t}$.

- Suppose the rate of inflation is 3%.
- What will be the purchasing power of \$1.00 three years later?

- Suppose the rate of inflation is 3%.
- What will be the purchasing power of \$1.00 three years later?
- 10 years later?

- Suppose the rate of inflation is 3%.
- What will be the purchasing power of \$1.00 three years later?
- 10 years later?
- In 10 years, \$10.00 will buy what \$7.44 buys now.

- Since 1968, the inflation rate has averaged 4.035%.
- Assuming a constant 4.035% per year, what was the current purchasing power of a "1999 dollar" in terms of the 1967 dollar?

- Since 1968, the inflation rate has averaged 4.035%.
- Assuming a constant 4.035% per year, what was the current purchasing power of a "1999 dollar" in terms of the 1967 dollar?
- What is the purchasing power of a "2018 dollar" in terms of the 1968 dollar?

Outline

- Inflation
- Increase in Prices
- 3 Decrease in Purchasing Power
- 4 An Example
- 5 Assignment

Example (Inflation)

 A man expects to earn an average return of 8% on his investments for the next 40 years.

- A man expects to earn an average return of 8% on his investments for the next 40 years.
- He plans to retire then and live for an additional 20 years.

- A man expects to earn an average return of 8% on his investments for the next 40 years.
- He plans to retire then and live for an additional 20 years.
- The Fed aims to keep inflation at 2% per year.

- A man expects to earn an average return of 8% on his investments for the next 40 years.
- He plans to retire then and live for an additional 20 years.
- The Fed aims to keep inflation at 2% per year.
- Assuming that
 - he invests a fixed amount each month (unrealistic) for 40 years, and

- A man expects to earn an average return of 8% on his investments for the next 40 years.
- He plans to retire then and live for an additional 20 years.
- The Fed aims to keep inflation at 2% per year.
- Assuming that
 - he invests a fixed amount each month (unrealistic) for 40 years, and
 - he withdraws a fixed amount each month for the following 20 years (also unrealistic), and

- A man expects to earn an average return of 8% on his investments for the next 40 years.
- He plans to retire then and live for an additional 20 years.
- The Fed aims to keep inflation at 2% per year.
- Assuming that
 - he invests a fixed amount each month (unrealistic) for 40 years, and
 - he withdraws a fixed amount each month for the following 20 years (also unrealistic), and
 - he wants the income of his final month to have the *purchasing* power that \$5,000 has today,

- A man expects to earn an average return of 8% on his investments for the next 40 years.
- He plans to retire then and live for an additional 20 years.
- The Fed aims to keep inflation at 2% per year.
- Assuming that
 - he invests a fixed amount each month (unrealistic) for 40 years, and
 - he withdraws a fixed amount each month for the following 20 years (also unrealistic), and
 - he wants the income of his final month to have the *purchasing* power that \$5,000 has today,
- how much should he invest each month?

Outline

- Inflation
- Increase in Prices
- 3 Decrease in Purchasing Power
- 4 An Example
- 5 Assignment

Assignment

Assignment

See handout.